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A quantitative structure–property relationship (QSPR) model was constructed to predict the
impact sensitivity of 156 nitro energetic compounds by means of artificial neural network (ANN).
Electrotopological-state indices (ETSI) were used as molecular structure descriptors which combined
together both electronic and topological characteristics of the analyzed molecules. The typical back-
propagation neural network (BPNN) was employed for fitting the possible non-linear relationship existed
between the ETSI and impact sensitivity. The dataset of 156 nitro compounds was randomly divided into
uantitative structure–property
elationship
lectrotopological-state indices
rtificial neural network

mpact sensitivity
itro energetic compounds

a training set (64), a validation set (63) and a prediction set (29). The optimal condition of the neural net-
work was obtained by adjusting various parameters by trial-and-error. Simulated with the final optimum
BP neural network [16–12–1], the results show that most of the predicted impact sensitivity values are
in good agreement with the experimental data, which are superior to those obtained by multiple linear
regression (MLR) and partial least squares (PLS). The model proposed can be used not only to reveal the
quantitative relation between impact sensitivity and molecular structures of nitro energetic compounds,

pact
but also to predict the im

. Introduction

Prediction of sensitivity is of great importance in deriving novel
nergetic molecules because safe handling is one of the most impor-
ant issues to the scientists and engineers who handle energetic

olecules [1]. Some stimulation, which includes impact, shock,
eat, electrostatic discharge and friction, can cause detonation.
mong various aspects of sensitivity, impact sensitivity is one of the
ost basic and important properties of energetic molecules. Exper-

mentally, impact sensitivity is measured by drop-weight impact
est, where a 2.5 kg weight is dropped from a predetermined height
nto the striker plate and evidence of reaction or no reaction is
ecorded. A sequence of test is carried out till the impact sensitivity
r the sensitivity index, H50 is obtained. The H50 is the height that
given weight dropped onto the sample produce an explosion of
0% the test trails.
The study on the correlation between impact sensitivity and
he structure of energetic molecules has been an ongoing research
eld in explosive theory [2]. Kamlet and Adolph [3] found rea-
onable linear correlations between oxygen balance OB100 and
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log H50 for families of high energy molecules with similar decom-
position mechanisms. Politzer and coauthors [4–9] have identified
some features of electrostatic potentials using quantum mechan-
ical calculations for CaHbNcOd explosives that appeared to be
related to their sensitivity impact. Rice and Hare [10] used approx-
imations to the electrostatic potential at midpoints, statistical
parameters of these surface potentials and the property–structure
relation method “generalized interaction property function” or
computed heats of detonation to predict impact sensitivity of
CaHbNcOd explosives and established five models. Xiao and cowork-
ers [11–16] used quantum chemistry calculation to propose the
thermodynamic criteria of “the smallest bond order”, “the prin-
ciple of the easiest transition”, and the kinetic criterion of “the
reaction activation energy of pyrolysis initiation” to judge the
impact sensitivity. Zhang et al. [17–19] on the basis of DFT have
found some relationships between impact sensitivity and nitro
group charges. Keshavarz [20] found some structural parameters
to predict the impact sensitivity of nitrate, nitroaliphatic and the
derivatives.

Artificial neural networks (ANN) architectures have been
recently used as prediction methodology for impact sensitivity.
Nefati et al. [21] first introduced the ANN to the prediction of ener-

getic molecules. Cho et al. [22] optimized the ANN architecture
based on the Nefati’s work. Keshavarz and Jaafari [23] built an ANN
model by choosing new descriptors as input parameters, and the
model showed a better prediction as compared to the quantum
mechanical models of Rice and Hare [10].
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Table 1
The symbols of 16 kinds of ETSI descriptors.

Number Descriptor type ETSI symbol Descriptors

1 aCHa SaaCH X1

2 saCa SsaaC X2

3 −N� SddsN X3

4 O SdO X4

5 >C< SssssC X5

6 –N< SsssN X6

7 –NH– SssNH X7

8 –CH< SsssCH X8

9 –CH2– SssCH2 X9

10 –CH3 SsCH3 X10

11 –Cl SsCl X11

12 –OH SsOH X12

13 –O– SssO X13
56 R. Wang et al. / Journal of Haza

In this study, the well-accepted quantitative structure–property
elationship (QSPR) method is employed to investigate the quan-
itative correlation between the impact sensitivity and molecule
tructures of nitro energetic compounds. QSPR is a mathe-
atical method that relates the properties of interest to the
olecular structures of compounds which are represented by a

ariety of molecular descriptors. Molecular descriptors are various
olecular-based theoretical parameters which can be calculated

sing known mathematical algorithms solely from molecular struc-
ures. In this study, the widely used electrotopological-state indices
ETSI) were employed as descriptors to encode the structure charac-
ers of the studied compounds. The atom-type E-state indices were
ntroduced by Hall and Kier [24] for the first time as an atomic
evel molecule descriptors. Indices of this kind combine the elec-
ronic and topological characters together. Furthermore, they take
nto account the surrounding chemical environment of atoms in
he molecule. Thus the ETSI have been proved effective in predicting

any physical and chemical properties of pure compounds, such as
he critical temperature [25], boiling point [24,25], aqueous solu-
ility [26,27], partition coefficient [28], log P [29], toxicity [30], auto

gnition point [31], and so on. However, to our best knowledge there
as no attempts been made to predict the sensitivity of energetic
ompounds by employing the ETSI.

The main goal of this work is to investigate the feasibility and
fficiency of ETSI in predicting the impact sensitivity of nitro ener-
etic compounds. By employing two linear modeling methods of
ultiple linear regressions (MLR) and partial least squares (PLS),

s well as a non-linear artificial neural network (ANN) method, we
ish that the present study would be a new attempt for predict-

ng the impact sensitivity from molecular structures, and would
mprove the prediction results.

. Materials and methods

.1. Dataset

The whole dataset is extracted from the literatures, which con-
ists of 156 compounds containing C, H, O and N. 138 of the impact
ensitivity were collected from the Explosive Research Laboratory
U.S.A.) [32] providing the largest number of impact sensitivity

easurements currently available; 16 of them were taken from
iterature [4] and the rest 2 from [3]. The impact sensitivity is mea-
ured by the logarithmic 50% impact height, lg H50. Compounds
ith lg H50 > 2.5 (H50 > 320 cm) from literature [32] were discarded

ince their sensitivity did not have specified values. The com-
ounds finally selected in the dataset belong to several families:
9 nitroaromatics, 55 nitramine, 40 nitroaliphatic compounds con-
aining other functional groups, 7 nitrate esters, and 5 nitroaliphatic
ompounds. Besides, it must be stated that the polynitroheterocyles
re not taken into account in this study due to their special struc-
ures and different detonation mechanism. However, the studied
ataset employed in this work are also named as “nitro energetic
ompounds” for the purpose of convenience and avoiding prolixity.

The dataset was randomly divided into a training set with 127
ompounds and a prediction set with 29 compounds. The train-
ng set was used for model development, and the prediction set
or model validation. In addition, for comparison purpose, both the
raining set and prediction set for all the three modeling methods
onsisted of the same compounds.
.2. Molecular descriptors

What is known as a critical aspect of QSPR research is the selec-
ion of suitable molecule descriptors. An efficient descriptor should
eflect as much structural information as possible and the more
14 –NH2 SsNH2 X14

15 >C SdssC X15

16 –NO2 S (–NO2) X16

precise the better. In this paper we employed the widely used
atom-type ETSI [24], which combine together the electronic and
topological characters of a molecule and take the binding environ-
ment into account. For each atom type in a molecule, the ETSI were
summed up and lent itself for use in a group additive type scheme
in which an index appeared for each atom type in the molecule
(together with its electrotopological-state contribution). Base on
the methodology of constructing the atom-type ETSI, we also intro-
duced the group-type ETSI with the consideration that nitro group
had significant influence of impact sensitivity. The group-type ETSI
were calculated by summing the electrotopological-state values
of all the atoms constructed the analyzed functional groups. The
detailed description on the procedure of calculation of the ETSI can
refer to the original work of Hall and Kier [24]. For the 156 nitro
energetic molecules studied in this paper, a total of 16 kinds of
ETSI descriptors were selected, which include 15 atom-type ETSI
descriptors and one group-type ETSI descriptor. The detailed ETSI
symbols were listed in Table 1.

2.3. Modeling methods

In this work, three methods were employed to build the QSPR
models between the ETSI descriptors and the impact sensitivity of
nitro energetic compounds. Two of the methods were linear tech-
niques of multiple linear regressions (MLR) and partial least squares
(PLS). The other one was artificial neural networks (ANN) which had
extensive applicability in solving non-linear systems.

The MLR analysis was performed by the SPSS software (Version
11.0; SPSS Inc.; Chicago, IL), and the PLS calculation was completed
via the MATLAB program written in M-files.

The ANN model was built by the STATISTICA Neural Networks
(SNN) software. A three-layer feed-forward neural network uti-
lizing the back-propagation algorithm was employed. The typical
back-propagation network consists of an input layer, an output
layer and at least one hidden layer. Each layer contains neurons
and each neuron is a simple micro-processing unit which receives
and combines signals from many neurons. The illustration of the
architectures of the ANN used in this study can be seen in Fig. 1. The
number of neurons presented in the input and output layer depends
on the number of variables (in this work ETSI and the impact sen-
sitivity, respectively). Besides, the number of neurons used for the
hidden layer is optimized by trial-and-error training assays.

Each neuron has weighted inputs, summation function, transfer

function and output. The behavior of a back-propagation network
is mainly determined by the transfer functions of its neurons. At
first, summation function is computed from the weighted sum of
all input neurons entering each hidden neuron and the weighted
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Fig. 1. The neural network architecture used in this work.

um of the inputs constitutes the activation of the neuron. Then
he activation signal is passed on to the transfer function for fur-
her processing. The role of the transfer function is to translate
he summed information into outputs. In this work, a logistic
(x) = 1/[1 + exp(−x)] transfer function was applied both for hidden
nd output neurons.

For a given input and a desired output, the back-propagation
eural network system can be trained by the following steps [33]:

1) The input vector is presented to the input layer of the network,
and then propagates through the hidden layer to the output
layer, where all of the summed inputs and output states for
each processing element in the network are set and an output
value is produced.

neth
j =

∑
i

ωijOi (1)

Oh
j = f (neth

j ) = 1

[1 + exp(−neth
j
)]

(2)

neto
k =

∑
j

ωjkOh
j (3)

Oo
k = f (neto

k ) = 1
[1 + exp(−neto

k
)]

(4)

where, f is the sigmoid transfer function, and wij/wjk are the con-
nection weights between hidden units and input/output units.

2) The actual output value Oo
k

is compared with the desired output
value Tk, and the error Ep and the global error E are determined,
respectively.

Ep = 1
2

∑
k

(Tpk − Oo
pk)2 (5)

E = 1
2p

∑
p

∑
k

(Tpk − Oo
pk)2 (6)
3) The weights are modified to reduce the error associated with the
overall error function. In this work, gradient descent method is
carried out for the reduction of E. The gradient descent method
is an iterative least squares procedure which tries to adjust the
connection weight for reducing the error most rapidly, by mov-
Materials 166 (2009) 155–186 157

ing the state of the system downward towards the direction of
maximum gradient.

ωjk(n + 1) = ωjk(n) + �ıpkOpk (7)

ωij(n + 1) = ωij(n) + �ıpjOpj (8)

ıpk = ∂Ep

∂neto
k

= Oo
pk(1 − Oo

pk)(Tpk − Oo
pk) (9)

ıpj = ∂Ep

∂neth
j

= Oh
pj(1 − Oh

pj)
∑

ıpkωjk (10)

(4) For each hidden layer, the training process starts at the layer
below the output layer, and ends with the layer above the input
layer. And for each processing element in the hidden layer, the
global error E is calculated and propagated back through the
networks. Furthermore, the delta weights are calculated again.

(5) Finally, in order to reduce the error, all of the weights in the
networks are updated by adding the delta weights to the cor-
responding previous weights. And the training process of the
ANN will be completed when the global error E is minimized.

Before the beginning of the training process, the optimal con-
dition of the neural network was obtained by adjusting various
parameters by trial-and-error. These parameters include: the learn-
ing rate, the momentum factor, the number of neurons in the hidden
layer, and the training endpoint. The learning rate determines the
speed at which the weights change. A large learning rate may cause
instability of the prediction system, while a small one may lead
to low convergence level. The momentum factor prevents sudden
changes in attaining the results. These two parameters are usually
set empirically, and in this study they were pre-optimized and both
assigned as 0.01.

The optimal number of neurons in the hidden layer was deter-
mined by varying the number of hidden neurons and observing the
root mean square error (RMS), which was used as a measure of the
prediction error of the trained model and was calculated with the
following equation:

RMS =
√∑n

i=1(pi − ai)
2

n
(11)

where, n is the number of compounds in the dataset, and pi is
the predicted output, ai is the actual output, respectively. Calcula-
tions of RMS were performed with leave-one-out cross-validation
and the average RMS of 10 runs was adopted. Leave-one-out cross-
validation referred to removing one sample in the dataset using for
the test set while the rest using as training set. Such process was
repeated until all samples of the dataset were used as the test sam-
ple. Finally, the number of neurons that gave the lowest RMS was
selected, and 16–12–1 was chosen as the best network architecture
in the presented work.

The early stopping technique was employed in the present study
for avoidance of overfitting. For the determination of optimal train-
ing endpoint, a validation set contained 63 compounds was used to
monitor the training process as measured by RMS. Thus, the training
endpoint giving the lowest RMS for the predictions of the validation
set was used.

2.4. Model validation

For the QSPR models, the quality was always judged by the sta-

tistical characters, for instance, the squared R (R ) and the root mean
square error (RMS). These parameters mainly reflect the goodness
of fit of the models. However, recent studies [34,35] have indicated
that good fitness could not automatically stand for good robust-
ness and internal predictive ability, and thus internal validation
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lgH50 = 1.5312 + 0.2352X3 + 0.0107X4 − 0.1438X5 − 0.1964X6

+ 0.0445X7 − 0.0649X8 − 0.0570X9 + 0.1546X10
58 R. Wang et al. / Journal of Haza

re considered to be necessary for model validation. In the present
tudy, we took the leave-one-out (LOO) cross-validation (CV) for
he internal validation to evaluate the internal predictive ability of
eveloped models, and its result was defined as Q 2

LOO, which could
e calculated with the following equation [34]:

2
LOO = 1 −

∑training
i=1 (yi − y′

i
)2

∑training
i=1 (yi − ȳ)2

(12)

here yi, y′
i, and ȳ were respectively the experimental, predicted,

nd mean lg H50 values of the samples for the training set.
Moreover, as we known, the external validation is a significant

nd necessary validation method used to determine both the gener-
lizability and the true predictive ability of the QSPR models for new
hemicals, by splitting the available dataset into a training set and
n external prediction set. As mentioned above, the whole dataset
n this work has been randomly divided into a training set with
27 compounds for model development, and a prediction set with
9 compounds for model external validation. The external predic-
ive ability of developed models on the external prediction set was
valuated by Q 2

ext, which could be calculated with the following
quation [34]:

2
ext = 1 −

∑prediction
i=1 (yi − y′

i
)2

∑prediction
i=1 (yi − ȳtr)2

(13)

here yi and y′
i were the experimental and predicted H50 values

f the samples for the prediction set, and ȳtr was the mean experi-
ental H50 values of the samples for the training set.

.5. Hardware

All the calculations involved in this study are performed on a
.4 GHz Intel Pentium IV with 2 GB RAM under windows XP.

. Results and discussion

The linear techniques of MLR and PLS were carried out to develop
SPR models on the training set after the data standardization, and

he resulted regression equations were listed as follows:

gH50 = 1.4315 + 0.2095X1 − 0.0563X2 + 0.1601X3 + 0.0146X4

− 0.0656X5 − 0.0352X6+0.0515X7 − 0.0193X8 − 0.0707X9

− 0.2347X10 − 0.0052X11 + 0.0079X12 + 0.0054X13

+ 0.0695X14 + 0.0253X15 − 0.0107X16 (14)

2 = 0.7705, RMS = 0.212, n = 127 (MLR)

gH50 = 1.3729 + 0.2078X1 − 0.0495X2 + 0.1623X3 + 0.0068X4

− 0.0680X5 − 0.0335X6+0.0573X7 − 0.0109X8 − 0.0596X9

− 0.2348X10 − 0.0055X11 + 0.0103X12 + 0.0083X13

+ 0.0711X14 + 0.0123X15 − 0.0012X16 (15)

2 = 0.7659, RMS = 0.214, n = 127 (PLS)

In the equations, n is the number of compounds used for model
uilding. The two equations are then used to predict the impact
ensitivity values of the compounds in the prediction set for exter-

al validation. Finally, the predicted impact sensitivity values for
ll 156 compounds are obtained and presented in Table 2. The main
erformance parameters of both models are shown in Table 3. A plot
f the predicted impact sensitivity values versus the experimental
nes for both models are shown in Figs. 2 and 3.
Materials 166 (2009) 155–186

As can be seen from Table 3, the performance of both linear mod-
els developed over the whole dataset was not good as expected. So,
in order to obtain more effective models, the dataset was divided
into three main classes according to their chemical families for
developing new models. Because the nitrate esters are only 7 cases
with 9 descriptors, which cannot be used for a regression and curve
fitting, so we combine them with the nitroaliphatic compounds.
As a result, the resulted three new datasets are nitroaromatic
compounds, nitramine compounds and nitroaliphatic compounds
(together with compounds containing other functional groups). In
addition, the three new datasets were also divided into a training
set and a prediction set according to the original divisions. Finally,
the resulted equations for the three new datasets were obtained
and listed as follows:

lgH50 = 1.7618 + 0.1559X1 − 0.0376X2 + 0.1269X3 − 0.0500X4

− 0.0931X5−0.0771X7 + 0.1288X8 + 0.1368X9+0.1077X10

− 0.040X11 − 0.0026X12 + 0.0462X13 + 0.0479X14

− 0.3240X15 + 0.0565X16 (16)

R2 = 0.8397, RMS = 0.1477, n = 39 (MLR)

lgH50 = 1.7618 + 0.1559X1 − 0.0376X2 + 0.1269X3 − 0.0500X4

− 0.0931X5−0.0771X7 + 0.1288X8+0.1368X9 + 0.1077X10

− 0.040X11 − 0.0026X12 + 0.0462X13 + 0.0479X14

− 0.3240X15 + 0.0565X16 (17)

R2 = 0.8346, RMS = 0.150, n = 39 (PLS)

lgH50 = 0.9522 + 0.1093X3 − 0.0256X4 + 0.0216X5 + 0.0294X6

+ 0.1048X7 − 0.0628X9 + 0.4057X10 + 0.0188X13

+ 0.1055X15 − 0.0190X16 (18)

R2 = 0.8522, RMS = 0.130, n = 45 (MLR)

lgH50 = 0.9872 + 0.0883X3 − 0.0032X4 + 0.0231X5 + 0.0374X6

+ 0.1007X7 − 0.0698X9 + 0.4096X10 + 0.01984X13

− 0.0103X15 + 0.0031X16 (19)

R2 = 0.8417, RMS = 0.134, n = 45 (PLS)

lgH50 = 1.8551 + 0.2131X3 + 0.0213X4 − 0.1587X5 − 0.4283X6

+ 0.0168X7 − 0.0936X8 − 0.0810X9 + 0.1197X10

+ 0.0062X12 − 0.0027X13 − 0.0547X14 + 0.0226X15

− 0.0234X16 (20)

R2 = 0.8010, RMS = 0.200, n = 43 (MLR)
+ 0.0210X12 − 0.0039X13 − 0.0156X14 + 0.0192X15

− 0.0048X16 (21)

R2 = 0.7815, RMS = 0.209, n = 43 (PLS)
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Table 2
Experimental and predicted H50 by BPNN, MLR, PLS and other methods.

Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

1 1-Methoxy-3,5-dichloro-2,4,6-trinitrobenzene* 75 72.28 71.94 76.2 57.11 –

2 1,3,5-Triamino-2,4,6-trinitrobenzene* 490 352.37 368.13 477.5 236.32 337

3 2,4,6-Trinitrophloroglucinol 27 62.95 62.52 32.4 49.39 –

4 3,3′-Dihydroxy-2,2′ ,4,4′ ,6,6′-hexanitrobiphenyl 40 48.75 48.53 36.2 47.14 56

5 1-Dinitromethyl-3-nitrobenzene 105 153.82 148.94 108.9 73.23 112

6 N,N′-Dinitro-methanediamine 13 32.36 32.36 24.4 36.39 9
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Table 2 (Continued )

Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

7 N-Methyl-N,N′-dinitro-1,2-ethanediamide 114 52.84 53.33 93.1 87.50 –

8 N,N′-Dinitro-N-[2-(nitroamino)ethyl]-1,2-ethanediamine 39 25 28.12 27.2 33.66 49

9 N,N′-bis-(2,2,2-Trinitroethyl)-N,N′-dinitromethanediamine 5 5.51 5.38 4.7 7.61 10

10 N,N’-dinitro-N,N′-bis-[2-nitroamino-ethyl]-1,2-ethanediamine 53 31.77 35.73 54.2 36.91 73

11 1,1,1,3,6,9,11,11,11-Nonanitro-3,6,9-triazaundecane 12 7.29 6.98 11.3 15.42 5
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12 1,1,1,3,6,6,8,10,10,13,15,15,15-Tridecanitro-3,8,13-triazapentadecane 23 10.94 10.23 24.8 17.98 7

13 N-(t-Buty)-trinitroacetamide 110 236.05 232.81 117.5 191.56 168

14 1,1,1,7,7,7-Hexanitroheptanone-4 34 14 22.18 30.5 30.80 35

15 Trinitroethyl-bis-(trinitroethoxy)-acetate 6 7.59 7.74 6.1 11.21 9

16 Tetrakis-(2,2,2,-trinitroethyl)-orthocarbonate 7 3.95 4.27 7.4 7.91 10

17 Methylene-bis-(4,4,4-trinitrobutyramide) 113 51.4 43.75 85.5 72.29 58
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Table 2 (Continued )

Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

18 bis-(2,2,2-Trinitroethyl)-4,4,6,6,8,8-hexanitro-undecanedioate 32 45.08 41.21 30.1 35.47 46

19 2,2-bis-(Nitroxymethyl)-1,3-propanediol dinitrate 13 31.33 34.2 13.2 13.07 52

20 2,4,6-Trinitrobenzyl chloride* 44 47.32 46.56 44.8 63.20 –

21 2,4,6-Trinitrobenzyl alcohol* 52 59.43 60.12 61.7 74.39 –

22 1-Hydroxyethyl-2,4,6-trinitrobenzene* 68 62.81 64.57 64 114.55 –
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23 2,4,6-Trinitrobenzoic acid* 109 55.08 54.08 74 78.58 102

24 2,4,6-Trinitrotoluene* 160 115.35 116.68 175.8 98.06 112

25 1-Ethoxy-2,4,6-trinitrobenzene* 190 102.33 106.41 125.6 213.85 –

26 Hexanitro benzene 12 10.84 9.66 13 14.79 –

27 2′ ,2′ ,2′-Trinitroethyl-2,4,6-trinitrobenzoate 24 22.75 22.39 21.2 23.63 27

28 2,4,6-Trinitro-3-amino-phenol 138 93.54 93.97 98.9 136.71 122
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

29 2′ ,2′ ,2′-Trinitroethyl-3,5-dinitrosalicylate 45 80.35 82.41 68.4 68.52 71

30 1-(2,2,2-Trinitroethyl)-2,4,6-trinitrobenzene 13 16.94 17.06 13.9 17.61 19

31 1-(2,2,2-Trinitroethyl)-2,4-dinitrobenzene 31 57.68 60.12 34.6 27.91 32

32 2,4,6-Trinitrobenzylalcohol 52 59.43 60.12 61.7 74.39 93

33 3,5-Dinitro-2,4,6-trinitrophenol 77 112.72 114.55 114.3 68.85 184

34 N,N′-Dinitromethylene-bis-(4,4,4-trinitro)-butyramide 13 22.13 20.99 19.4 14.89 21
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35 bis-(5,5,5-Trinitro-3-nitrazapentanoyl)-methylenedinitramine 15 15.1 16.6 14.9 11.12 4

36 2,2,2-Trinitroethyl-N-(2,2,2-trinitroethyl)-nitramino acetate 9 11.67 11.35 9.4 11.05 11

37 2,2,2-Trinitroethyl-4-nitrazavalerate 35 41.59 41.21 55.1 25.01 114

38 Trinitropropyl-(2,2-dinitropropyl)-nitramine 17 25.64 26.55 21.3 24.89 16

39 Trinitroethyl-5,5-dinitro-3-nitrazahexanoate 25 30.13 29.92 24.3 23.98 20

40 2,2,2-Trinitroethyl-2,5,5-trinitro-2-azahexanoate 22 39.54 41.88 28.9 23.98 20
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

41 bis-(2,2,2-Trinitroethyl)-3-nitrazaglutarate 14 23.28 21.68 18.8 16.04 0

42 N,N′-Dinitro-N,N′-bis-(3,3,3-trinitropropyl)-oxamide 9 15.21 15.31 8.7 10.88 24

43 bis-(2,2,2-Trinitroethyl)-4-nitraza-1,7-heptanedioate 29 29.99 27.61 29.6 31.05 41

44 bis-(2,2,2-Trinitroethyl)-3,6-dinitraza-1,8-octanedioate 29 22.44 21.38 20.4 20.33 17

45 Trinitroethyl-2-methoxy-ethylnitramine 42 32.81 33.5 30.6 43.77 30

46 N-Methyl-N′-trinitroethyl-N,N′-dinitro-1,2-ethanediamine 11 25.41 25.82 17.6 23.40 21

47 1,1,1,3,6,9,12,14,14,14-Decanitro-3,6,9,12-tetraza-tetradecane 19 9.53 9.66 19.7 21.25 18

48 bis-trinitroethyl-5,5-dinitro-2,8-dinitraza-nonanedioate 12 18.32 18.71 13.5 16.20 7
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49 2,2-Dinitro-1,3-propane diol 110 49.89 49.66 82.2 101.30 107

50 4,4,4-Trinitrobutyramide 40 56.36 49.77 67.9 40.71 41

51 bis-(Trinitroethoxy)-methane 17 14.32 14.93 11.4 18.33 14

52 N-(2-Propyl)-trinitroacetamide 112 96.61 93.54 108.4 121.34 90

53 2,2,2-Trinitroethyl-4,4-dinitrovalerate 70 41.78 40.46 39.5 52.05 89

54 N,N′-bis-(3,3,3-trinitropropyl)-oxamide 45 38.46 35.56 56 48.66 29

55 N,N-bis-(2,2-Dinitropropyl)-4,4,4-trinitrobutyramide 72 52 51.17 48.8 75.81 87



16
8

R
.W

ang
et

al./JournalofH
azardous

M
aterials

166
(2009)

155–186

Table 2 (Continued )

Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

56 Trinitroethyl-2,2-dinitropropylcarbonate 15 33.34 34.67 28.9 31.26 25

57 bis-(2,2,2-Trinitroethyl)-succinate 30 28.64 25.41 24.4 29.35 41

58 5,5,5-Trinitropentanone-2 125 48.53 40.83 65.8 96.76 73

59 2,2-Dinitropropyl-4,4,4-trinitrobutyramide 72 55.59 53.21 56.4 68.38 73

60 3-[N-(2,2,2-Trinitroethyl)-nitramino]-propylnitrate 12 15.1 15.56 10.7 19.46 8

61 1,9-Dinitrato-2,4,6,8-tetranitrazanonane 10 16.9 16.87 11 11.87 10

62 3,5,5-Trinitro-3-azahexyl-nitrate 21 35.65 37.24 34.4 32.38 59
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63 2,2,4,6,6-Pentanitroheptane 56 48.98 50.93 56.6 87.30 80

64 3,3,4,4-Tetranitro-hexane 80 73.45 76.38 83.4 22.92 117

65 2,4,6-Trinitro-acetylbenzene* 79 96.83 84.72 133.4 144.11 –

66 Methyl-2,4,6-trinitrobenzoate* 90 91.62 83.56 119.1 129.84 –

67 2,4,6-Trinitroaniline* 177 100.93 101.16 109.9 136.46 172

68 1,3-Diamino-2,4,6-trinitrobenzene* 320 187.93 187.93 218.3 178.24 290
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

69 1-Methyl-3,5-diamino-2,4,6-trinitrobenzene** 239 347.54 348.34 462.4 151.18 –

70 1,3,5-Trinitrobenzene* 100 61.24 61.24 63.8 106.24 108

71 1,2,4,5-Tetranitrobenzene 27 23.6 23.5 20.7 113.66 24

72 2,4,6-Trinitroresorcinol 43 47.97 48.31 40 60.84 79

73 2,3,4,6-Tetranitroaniline 41 51.4 50.82 44.2 68.05 50
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74 2,4-Dinitroresorcinol 296 92.47 93.33 108.1 138.45 227

75 1-Hydroxy-3,5-diamino-2,4,6-trinitrobenzene 120 184.93 187.93 197.7 133.05 186

76 2′ ,2′ ,2′-Trinitroethyl-3,5-dinitrobenzoate 73 48.31 47.1 35.9 37.62 83

77 2,2′ ,4,4′ ,6,6′-Hexanitrobiphenyl 85 35.32 36.39 29.3 55.49 55

78 3-Hydroxy-2,2′ ,4,4′ ,6,6′-hexanitrobiphenyl 42 39.54 40.18 35.3 49.14 59

79 2,2′ ,4,4′ ,6,6′-Hexanitrodiphenylamine 48 49.66 53.09 29.7 77.43 62
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

80 2,2′ ,4,4′ ,6-Pentanitrobenzophenone 54 142.56 132.13 104.5 68.80 79

81 1-(3,3,3-Trinitropropyl)-2,4-dinitrobenzene 31 35.89 36.9 23.2 41.96 72

82 1-(3,3,3-Trinitropropyl)-2,4,6-trinitrobenzene 21 24.38 24.89 18.7 26.71 22

83 3-Methyl-2,2′4,4′ ,6′-pentanitrobiphenyl 143 140.28 148.25 105.9 82.36 93

84 3,3′-Dimethyl-2,2′ ,4,4′ ,6,6′-hexanitrobiphenyl 135 96.16 98.86 87.1 46.46 71

85 N,N′-Dinitro-1,2-ethanediamine 34 35.08 35.81 25.6 54.88 15
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86 Cyclotrimethylene-trinitramine 26 22.23 22.23 41.5 22.17 31

87 bis-(2,2,2-Trinitroethyl)-nitramine 5 5.43 5.33 3.8 7.50 1

88 N,N′-dimethyl-N,N′-dinitrooxamide 79 66.68 57.41 151 37.84 93

89 1,3,3,5,5-Pentanitropiperidine 14 30.06 30.55 25.9 20.45 17

90 2,2,2-Trinitroethyl-3′ ,3′ ,3′-trinitropropyl-nitramine 6 8.2 8.07 6.7 11.13 10

91 N,N′-3,3-Tetranitro-1,5-pentanediamine 35 57.54 58.75 62.8 38.12 23

92 N-Nitro-N-(3,3,3-trinitropropyl)-2,2,2-trinitroethyl-carbamate 9 11.61 11.8 8.6 11.05 11
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

93 2,2,2-Trinitroethyl-3,3-dinitrobutyl-nitramine 20 20.56 21.23 16.1 24.89 16

94 bis-(Trinitroethyl)-2,4-dinitrazapentanedioate 10 10.02 10.52 5.1 8.05 24

95 2,2-Dinitropropyl-5,5,5-trinitro-2-nitrazapentanoate 16 28.97 29.44 20.5 23.98 20

96 N-Nitro-N,N′-bis-(trinitropropyl)-urea 21 17.7 17.3 13.7 19.49 9

97 2,2,2-Trinitroethyl-2,4,6,6-tetranitro-2,4-diazaheptaneoate 18 19.63 20.46 10.9 15.11 3

98 bis-(Trinitroethyl)-2,4,6-trinitraza-heptanedioate 13 8.93 9.38 5.2 9.00 22
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99 N-(2,2-Dinitrobutyl)-N,2,2-trinitro-1-butanamine 80 110.92 116.14 89.7 85.17 90

100 2,2,4,7,9,9-Hexanitro-4,7-diazadecane 72 49.32 53.58 43 38.85 30

101 1,1,1,4,6,6,8,11,11,11-Decanitro-4,8-diazaundecane 11 11.22 10.94 17.9 15.09 5

102 1,1,1,3,6,6,9,11,11,11-Decanitro-3,9-diazaundecane 10 9.91 9.77 15.6 15.09 5

103 bis-(2,2,2-Trinitroethyl)-2,5,8-trinitraza nonanedioate 17 16.63 16.71 13.6 16.46 8

104 N,N′-Dinitro-N,N′-bis-(3,3-dinitrobutyl)-oxamide 37 70.96 72.44 43.3 36.68 51
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

105 2,2,4,7,7,10,12,12-Octanitro-4,10-diazatridecane 44 60.95 66.53 61.5 44.49 36

106 2,2,5,7,7,9,12,12-Octanitro-5,9-diazatridecane 37 69.02 74.47 66.2 44.49 36

107 2,2-Dinitropropanediol-bis-(5,5-dinitro-2-nitraza-hexanoate) 138 140.93 148.25 48.8 43.34 113

108 2,2,2-Trinitroethyl-carbamate 18 49.09 46.24 55.5 44.19 10

109 Methyl-2,2,2-trinitroethyl carbonate 28 39.9 37.84 43.9 45.73 27

110 bis-(2,2,2-Trinitroethyl)-carbonate 16 12.27 12.79 10.3 12.44 10

111 N,N′-bis-(2,2,2-trinitroethyl)-urea 17 16.87 16.9 19.4 21.14 12
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112 bis-(trinitroethyl)-oxalate 15 15.63 16.41 14.2 12.74 14

113 bis-(Trinitroethyl)-oxamide 13 20.42 20.18 23.3 23.65 21

114 N-Trinitroethyl-4,4,4-trinitrobutyramide 18 21.73 20.65 20.4 25.69 11

115 tris-(2,2,2-trinitroethyl)-orthoformate 7 6.05 6.22 5.5 10.74 10

116 2,2-Dinitropropyl-trinitrobutyrate 151 46.34 44.87 44.7 52.05 89

117 bis-(2,2-Dinitropropyl)-carbonate 300 90.57 93.97 86.7 81.60 191

118 bis-(Trinitropropyl)-urea 23 30.2 29.44 47.1 50.27 23
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

119 4,4,4-Trinitrobutyricanhydride 30 30.76 27.67 30.6 29.53 40

120 bis-(2,2-Dinitropropyl)-oxalate 227 108.64 109.65 122.2 84.08 183

121 2,2,2-Trinitroethyl-4,4-dinitrohexanoate 138 62.52 59.57 60.3 77.13 146

122 Ethylene-bis-(4,4,4-trinitrobutyrate) 120 41.69 35.97 34.4 61.93 121

123 2,2-Dinitropropane-1,3-diol-bis-(4,4,4-trinitrobutyrate) 50 43.45 40.27 44.6 37.88 61

124 1,2,3-Propanetrioltrinitrate 20 20.75 20.89 13.3 16.65 10

125 N-(2,2,2-Trinitroethyl)-nitraminoethyl nitrate 7 14.16 14.32 9.6 13.90 10
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126 1,1,1,3,5,5,5-Heptanitropentane 8 6.14 5.81 5.2 9.17 16

127 2,2,4,4,6,6-Hexanitroheptane 29 32.36 34.91 30.6 48.19 43

128 2,4,6-Trinitro-1-chlorobenzene* 79 41.3 40.36 40.6 65.19 –

129 1,3-Dimethoxy-2,4,6-trinitrobenzene* 251 120.5 125.6 116.4 161.85 284

130 2,3,4,5,6-Pentanitroaniline 15 39.9 37.15 35.9 33.22 14

131 2′ ,2′-Dinitropropyl-2,4,6-trinitrobenzoate 214 66.37 65.77 62.1 70.65 156
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

132 3,3′-Diamino-2,2′ ,4,4′ ,6,6′-hexanitrodiphenylamine 132 255.86 267.3 148.3 104.47 102

133 Picric acid** 87 47.21 47.53 49.7 78.32 –

134 2,4,6-Trinitroanisole* 192 85.11 86.3 100.2 131.10 216

135 2,4,6-Trinitro-m-cresol 191 73.79 74.82 87.9 74.39 93

136 3-Methyl-2,2′ ,4,4′ ,6,6′-hexanitrobiphenyl 53 52.72 54.33 48.8 50.87 53

137 2,2′ ,4,4′ ,6,6′-Hexanitrobibenzyl 114 74.82 80.17 45.2 46.46 80
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138 N-Methyl-N-nitro-(trinitroethyl)-carbamate 17 24.77 24.1 22.8 21.43 10

139 Trinitroethyl-N-ethyl-N-nitro-carbamate 19 38.28 36.81 37.9 30.85 26

140 2′ ,2′ ,2′-Trinitroethyl-2,5-dinitrazahexanoate 15 31.77 31.62 29.3 22.30 30

141 N-(2,2-dinitropropyl)-N,2,2-trinitro-1-propanamine 29 41.3 44.06 35 41.07 31

142 N,N′-Dinitro-N,N′-bis-(3-nitrazabutyl)-oxamide 90 97.27 89.74 138.7 33.78 143

143 1,1,1,18,18,18-Hexanitro-3,16-dioxa-4,15-dioxo-5,8,11,14-tetranitrazaoctadecane 19 18.62 18.88 20.1 22.69 17

144 Methyl-2,2,2-trinitroethylnitramine 9 18.92 18.92 19.1 24.08 10

145 1,7-dimethoxy-2,4,6-trinitrazaheptane 166 102.09 106.91 146.9 54.23 169
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Number Compounds Structure Exp. H50 (cm) Predicted H50 (cm)

MLR PLS BPNN Nefati et
al. [21]

Keshavarz and
Jaafari [23]

146 Cyclotetramethylene-tetranitramine 29 23.6 23.66 29.9 18.23 31

147 2,2,6,9,9-Pentanitro-4-oxa-5-oxo-6-azadecane 47 77.8 78.89 60.3 53.78 60

148 2,2,2-Trinitroethyl-4,4,4-trinitrobutyrate 18 16.83 16.14 15.6 20.15 18

149 bis-(2,2,2-Trinitroethyl)-4,4-dinitroheptanedioate 68 40.27 37.07 40.9 37.88 61

150 Methylene-bis-N,N′-(2,2,2-trinitroacetamide) 9 9.38 10.3 9.6 13.72 9

151 Methylene-bis-(trinitroethyl)-carbamate 27 24.15 25 26.6 31.86 12
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152 Nitroisobutyl-4,4,4-trinitrobutyrate 279 142.89 133.97 123 144.05 299

153 1,5-bis-(Trinitroethyl)-biuret 24 25.64 25.06 42.6 26.74 10

154 Ethyl-2,2,2-trinitroethylcarbonate 81 56.62 53.33 61.7 70.19 142

155 4,4,8,8-Tetranitro-1,11-dinitro-6-nitrazaundecane 87 42.36 45.08 40.4 30.63 63

156 1,1,1,3-Tetranitrobutane 33 25.18 25 30.5 34.08 36

The substances from 1 to 64 composed the training samples, those from 65 to 127 were the validation samples, and those from 128 to 156 were the prediction samples. The compounds marked (*) were taken from literature [4],
the ones marked (**) were taken from literature [3], and the others from literature [32].
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training and prediction sets. Moreover, it must be noted that for
Fig. 2. Correlation between the predicted and experimental H50 by MLR.

Eqs. (16) and (17) are the regression results for nitroaromatic
ompounds, Eqs. (18) and (19) are for nitramine compounds, and
qs. (20) and (21) are for nitroaliphatic compounds.

The obtained equations are then used to predict the impact sen-
itivity values of the compounds in the prediction sets for external
alidation, respectively. Finally, the predicted impact sensitivity
alues for each dataset are obtained, and the main performance
arameters of these models are shown in Table 4.

From Table 4, it can be seen that the model for nitramine
ompounds perform better than those for other two classes of com-
ounds, as it showed larger correlation coefficients (R2 and R2

ext),
ower RMS, as well as better robustness (Q 2

ext) for both training
nd prediction sets. As for the class of nitroaromatic compounds,
lthough the obtained models got good results for training set, the
redicted results were poor. The reasons for the weak predictive
bility of this model may be attributed to the low ratio of samples
o descriptors (39/15). Moreover, the unreasonable division of the
ataset may also lead to the poor predictive ability of the developed
odel. As for the class of nitroaliphatic compounds, the results for

rediction set were unreasonably much better than those for train-
ng set. This phenomena may result from the chance correlation
roblems.

For BPNN modeling, as discussed above, a 16–12–1 architec-
ure was applied as the final network. We repeated the training
rocedure 10 times and recorded the result of each time, and
hen an average value was taken as finally prediction result of
ach compound. The predicted impact sensitivity values for all 156
ompounds are obtained and presented in Table 2. The main per-
ormance parameters of ANN model are shown in Table 3. A plot
f the predicted impact sensitivity values versus the experimental

nes for ANN model is shown in Fig. 4.

As can be seen from Table 3, both the MLR and PLS models
howed poor abilities for external prediction, which would prove
hat, there is not a simple linear correlation between the ETSI and

able 3
erformance comparison between models obtained by MLR, PLS, BPNN and other method

odel Training set

R2 Q 2
LOO R

LR 0.771 0.593 0
LS 0.766 0.674 0
PNN 0.816 – 0
efati et al. [21] 0.795 – 0
Fig. 3. Correlation between the predicted and experimental H50 by PLS.

impact sensitivity. Meanwhile, the non-linear BPNN model can give
better results here with higher correlation coefficients (R2 and R2

ext),
lower RMS, as well as better robustness (Q 2

ext) in both training set
and prediction set, which indicated that the BPNN method not only
performed well in model development, but also had superior pre-
diction ability than the linear ones. This fact proved our previous
conjecture that a non-linear correlation may exist between the ETSI
and impact sensitivity.

Besides, a Y-scrambling [36] was also executed to ensure the
robustness of the BPNN model, in which the dependent variables
were scrambled of random numbers. The trials were repeated 10
times, and for each time, very small coefficients for both model fit-
ting and validation were achieved. It can be thus concluded that
only the correct dependent variable can be used to generate rea-
sonable models, and the chance correlation had little or no effect
in the presented model.

Moreover, it would be worthwhile to compare our present work
with those previous ones. Nefati et al. [21] first introduced the BPNN
method to the QSPR study of impact sensitivity. In their study, they
tried several combinations of molecular descriptors, and built mod-
els with the same three modeling methods as that were employed
in our study. However, direct comparison of the results cannot be
performed between the work of Nefati et al. and the presented one,
because the dataset and descriptors employed in these two stud-
ies were different. So, in order to make a direct compassion, we
employed the descriptors used in the work of Nefati et al. to build a
new BPNN model by using the current dataset. The obtained results
were shown in Table 3 and corresponding predicted values were
listed in Table 2. As can be seen, the results of the new BPNN model
were a little worse than those of our presented model for both the
.

Prediction set

MS R2
ext Q 2

ext RMS

.212 0.715 0.716 0.251

.214 0.718 0.718 0.250

.192 0.740 0.738 0.247

.203 0.756 0.703 0.257

the work of Nefati et al, the external validation was not carried out,
thus the true prediction ability of the model for new organic com-
pounds which were not used for model development was not clear,
although this work showed a better fitting results than ours.
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Table 4
Performance of MLR and PLS models for three classes of nitro compounds.

Classes Model Training set Prediction set

R2 Q 2
LOO RMS R2

ext Q 2
ext RMS

Nitroaromatics
MLR 0.840 0.529 0.148 0.457 0.522 0.267
PLS 0.835 0.565 0.150 0.424 0.497 0.277

Nitramine
MLR 0.852 0.695 0.130 0.856 0.670 0.225
PLS 0.842 0.724

Nitroaliphatics
MLR 0.801 0.512
PLS 0.782 0.484
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Fig. 4. Correlation between the predicted and experimental H50 by BPNN.

As for the work of Keshavarz and Jaafari [23], which built a QSPR
odel for prediction of impact sensitivity by employing 10 molec-

lar descriptors and BPNN method, a general comparison is also
resented. Firstly, we converted the impact sensitivity values of
ompounds from lg H50 to H50 (in cm). Following, the common com-
ounds appeared in both works were collected as a new dataset and
MS errors of each model were calculated on them for comparison
urpose. The new dataset includes 116 compounds in training set
nd 27 compounds in prediction set according to our dataset divi-
ion. The new RMS errors for our model is 40 and 60 for training
et and prediction set, respectively, while those for Keshavarz and
aafari’s model is 31 and 30, respectively. The results showed that
ur results are very close to those for the whole dataset (with the
orresponding value of 43 and 58), while for the work of Keshavarz
nd Jaafari, the RMS error of the new dataset was much lower than
hat of the whole dataset (with RMS of 41). This fact may indi-
ate the internal instability of the model of Keshavarz and Jaafari,
ecause for stable models, the performances of subsets are always
onsidered to be close to each other or to that of the whole dataset.
oreover, as recommended in literature [35], the model developed

n this study have been tested by using a sufficiently large num-
er of compounds not used in the model development (20% of the
omplete dataset), thus the developed model can be considered
o be with a better external predictive ability and generalization
erformance.

. Conclusion
In this study, the ETSI were successfully employed to build a
SPR model for predicting the impact sensitivity of nitro energetic
ompounds via BPNN. The results showed that the ETSI can well
haracterize the structure of nitro energetic compounds and there is
stronger non-linear relationship existed between ETSI and impact

[

[

0.134 0.864 0.676 0.223

0.200 0.932 0.811 0.188
0.209 0.974 0.837 0.175

sensitivity. Moreover, the BPNN model exhibited higher correla-
tion coefficients and lower RMS than the MLR and PLS ones, which
showed a better ability of prediction and generalization. However,
due to the limited dataset employed in this work, it must be stated
that the model developed cannot be applied for all nitro energetic
compounds, such as polynitroheterocyles. Nevertheless, it can be
still believed that the developed BPNN model using ETSI can well
correlate the impact sensitivity with the molecular structure of
nitro energetic compounds, and estimate the impact sensitivity of
new nitro compounds or the ones whose experimental values are
unknown.
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